skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Surace, Federica"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report universal statistical properties displayed by ensembles of pure states that naturally emerge in quantum many-body systems. Specifically, two classes of state ensembles are considered: those formed by (i) the temporal trajectory of a quantum state under unitary evolution or (ii) the quantum states of small subsystems obtained by partial, local projective measurements performed on their complements. These cases, respectively, exemplify the phenomena of “Hilbert-space ergodicity” and “deep thermalization.” In both cases, the resultant ensembles are defined by a simple principle: The distributions of pure states have maximum entropy, subject to constraints such as energy conservation, and effective constraints imposed by thermalization. We present and numerically verify quantifiable signatures of this principle by deriving explicit formulas for all statistical moments of the ensembles, proving the necessary and sufficient conditions for such universality under widely accepted assumptions, and describing their measurable consequences in experiments. We further discuss information-theoretic implications of the universality: Our ensembles have maximal information content while being maximally difficult to interrogate, establishing that generic quantum state ensembles that occur in nature hide (scramble) information as strongly as possible. Our results generalize the notions of Hilbert-space ergodicity to time-independent Hamiltonian dynamics and deep thermalization from infinite to finite effective temperature. Our work presents new perspectives to characterize and understand universal behaviors of quantum dynamics using statistical and information-theoretic tools. 
    more » « less
    Free, publicly-accessible full text available November 25, 2025
  2. We report universal statistical properties displayed by ensembles of pure states that naturally emerge in quantum many-body systems. Specifically, two classes of state ensembles are considered: those formed by (i) the temporal trajectory of a quantum state under unitary evolution or (ii) the quantum states of small subsystems obtained by partial, local projective measurements performed on their complements. These cases, respectively, exemplify the phenomena of “Hilbert-space ergodicity” and “deep thermalization.” In both cases, the resultant ensembles are defined by a simple principle: The distributions of pure states have maximum entropy, subject to constraints such as energy conservation, and effective constraints imposed by thermalization. We present and numerically verify quantifiable signatures of this principle by deriving explicit formulas for all statistical moments of the ensembles, proving the necessary and sufficient conditions for such universality under widely accepted assumptions, and describing their measurable consequences in experiments. We further discuss information-theoretic implications of the universality: Our ensembles have maximal information content while being maximally difficult to interrogate, establishing that generic quantum state ensembles that occur in nature hide (scramble) information as strongly as possible. Our results generalize the notions of Hilbert-space ergodicity to time-independent Hamiltonian dynamics and deep thermalization from infinite to finite effective temperature. Our work presents new perspectives to characterize and understand universal behaviors of quantum dynamics using statistical and information-theoretic tools. Published by the American Physical Society2024 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. Quantum systems evolving unitarily and subject to quantum measurements exhibit various types of non-equilibrium phase transitions, arising from the competition between unitary evolution and measurements. Dissipative phase transitions in steady states of time-independent Liouvillians and measurement induced phase transitions at the level of quantum trajectories are two primary examples of such transitions. Investigating a many-body spin system subject to periodic resetting measurements, we argue that many-body dissipative Floquet dynamics provides a natural framework to analyze both types of transitions. We show that a dissipative phase transition between a ferromagnetic ordered phase and a paramagnetic disordered phase emerges for long-range systems as a function of measurement probabilities. A measurement induced transition of the entanglement entropy between volume law scaling and sub-volume law scaling is also present, and is distinct from the ordering transition. The two phases correspond to an error-correcting and a quantum-Zeno regimes, respectively. The ferromagnetic phase is lost for short range interactions, while the volume law phase of the entanglement is enhanced. An analysis of multifractal properties of wave function in Hilbert space provides a common perspective on both types of transitions in the system. Our findings are immediately relevant to trapped ion experiments, for which we detail a blueprint proposal based on currently available platforms. 
    more » « less